

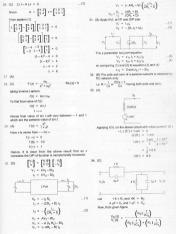
(C) The Rank of the gru

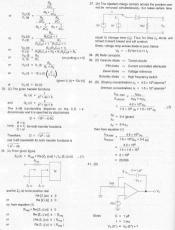
om equation (A) it is clear that out of given options. P. - 1 a., will be maximum when V_{G*} = 3V. 13. (A) The given K-map : So inversely proportional to doping concentration (A) For extrinsic semiconductor the current density is given by relation $J_{\alpha}\left(x\right) = q \, \mu \alpha\left(x\right) \, \mathbb{E}\left(x\right) + q \, \mathbb{D}_{\alpha} \, \frac{d\alpha\left(x\right)}{dx}$ and for minority carrier current, low level injection, if (x) is very loss. Le negligible but tonn d'n (x) is significant. Here only 2 groups are possible in the minimized some-Harroe, the current is essentially due to diffusion term 10. (B) The phenomenon known as 'Early Effect' in a bipolar 14. (A) : x (f) (F. T. x (bo) motion increases on increasing reverse biased voltage. results decrease in the effective base width. x 15 (7 - 3/5)] (D) The transconductance amplifier is a voltage to current So, here we consider two property arrelifier as shown below: $\times (nt) = \left(\frac{1}{n}\right) \times \left(\frac{p_0}{|n|}\right)$ $x(t-t_0) = e^{-y(t)} \times t(t_0)$ The ideal transconductance amplifier supplies on output $F[x(5t-3)] = \frac{1}{5}a^{-35x5} \times {ks \choose 5}$ current which is proportional to the signal voltage. independent of the magnitudes of source resistance and (C) The Direc delta function 5 (f) $\delta (n) = \begin{cases} 1, t = 0 \\ 0, \text{ otherwise} \end{cases}$ Z. = = and Z. = = (D) The given two points are Vos = 0V et lo = 12 mA and and [8 (6 of = 1 60 Ver # - 6V ot to = 0 16. (D) If the region of convergence of $x_1(n) + x_2(n)$ is $\frac{1}{3} < |z| < \frac{2}{3}$ Then the region of convergence of $x_1(n) - x_2(n)$ intentes 1 + 1 x 1 + 2

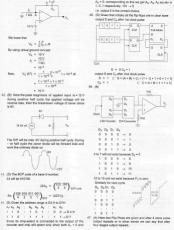
V₀₀₀₀ =6-5-4-3-2-1 0

From the given in-fermion, lg-V₀₀ curve is shiften figure V₀₀ = V_μ = 8V, because have ln = 0 and lnas = 12 mA

Here $V_{OS} = V_{P} = -3V$, the term $V_{OS} = 12 \text{ mA}$ Now, transconductance is given by relation $g_{ee} = g_{eo} \left(1 - \frac{V_{OS}}{V_{P}}\right)$


where, $g_{PQ} = \frac{-2loss}{V_P}$ or $g_{Pl} = \frac{-2loss}{V_P} \left(1 - \frac{V_{CR}}{V_P}\right)$


...(A)


 $\begin{array}{lll} G_{i}(4) &=& \frac{1}{(\mu + \gamma)(\mu + 2)} \\ gives H_{i}(9) &=& 1 & \\ G_{i}(9) H_{i}(9) &=& \frac{1}{(\mu + \gamma)(\mu + 2)} \\ gives H_{i}(9) &=& \frac{1}{(\mu x^{2} + \gamma)(\mu ^{2} + 4)} \\ G_{i}(\mu x^{2} + \gamma)(\mu ^{2} + 4) &=& \frac{1}{(\mu x^{2} + 4)} \\ K_{i}(\mu x^{2} + \gamma)(\mu ^{2} + 4) &=& 0 \end{array}$

Gain mengin = 20 log₁₀ | G (io₁) H (io₁) |
Gain Margin = ::

(6) Given program ++ Corresponding output of SP LXI SP. DEFEN **EFFEH** GALL 2000 H

3000 H : LXXH 20F4H 44 FEFFH PUSH PSW ++ EFFON (Content decremented by 2) SPHL ++ 3 CF4 . (Loading stock pointer)

POR PRW -- 3CE (Content incremented by 2) RET -- 1 CER nonted by 2, because return RET instruction is.

(D) Given that point P is stuck at-1

QIP of cate 5 will be 0 Now, for any value of gate 6 output, the output of gate 7

output of gate 8 = A-1

output of gate 9 = A = A (R) Given with with hundredste 500 Mz or 0.5 Max was olled by o (f) $g(l) = \sum_{i} (-1)^{4} \delta(l - 0.5 \times 10^{-4} \text{ K})$ Multiplication of two signal in time domain is equivalent to

convolution in frequency domain.

0 (0 = (-1)1 8#-05 x 10-9 off = -18/7-95×10*1

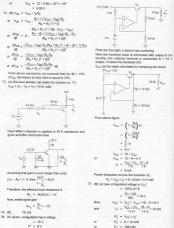
Let the resulting signal be y (t) Lu y (f) = m (f)*g (5 when this resulting signal is passed through an ideal low pass filter with bendwidth 1 kHz

The output of the low pass filter would be m (r).

we know that sin 3A = 3 sin A - 4 sin 3 A

= 2x 1000 / then

 $+\frac{7}{(\pi t)^2}$ $\frac{1-\cos(2\times 2\pi)}{2}$ Here the maximum value of modulating frequency i.e. $f_{\rm m} = 3 \times 1000 = 3 \times 10^3 \, Hz$


So, minimum sampling frequency required to reconstruct the signal = 2 /m $f_a = 2 \times 3 \times 10^3 = 6 \times 10^3$ samples to c

(C) Given input, x'(n) and output y'(n) is given as

 $K = \frac{(1-2a)}{(a-1)}$ The given system equation is linear, since there is no constant and square terms in the given equation $49^2 + (K + 1) =$ The given system is stable, since $\left(\sin\frac{5}{6}nn\right)$ always $a(100^2 + (K + 1)) = 0$ less then | 1 |. a = (K + 1) The given system equation is non-invertible, since for different input say a a 6 and a = 12 it clues the m = 2 radius C (f) = 1 - e-2f for t = 0 then 57. (C) The unit impulse response of system Taking Laplace transform $h \in \mathbb{N} = e^{-t}$ and $t \le 0$ $C(s) = \frac{1}{s} - \frac{1}{(s+2)}$ taking Laplace transform $C(s) = \frac{s+2-s}{s(s+2)}$ H(s) = 1 for unit impulse $C(s) = \frac{2}{\pi(s+2)}$ Horn R (s) = 1/s unit step response $\frac{C(s)}{R(s)} = \frac{2s}{s(s+2)}$ $Y(s) = \frac{1}{s} + \frac{1}{(s+1)}$ (D) The Nyoutst plot of G (in). H (in) for a closed loop y(f) = 1-e-f control system, passes through (- 1, / 0) point in GH plane, so it is passes on unit circle. So the gain margin is vm = 1 $G(s) = \frac{K(s+1)}{s^3 + ss^2 + 2s + 1}$ $G_{C}(s) = \left(\frac{1+3Ts}{1+Ts}\right)$ Characteristic equation s3 + as2 + 2s + 1 + Ks + K = 0 For may phase shift provided $a^{3} + as^{2} + (2 + K) s + (K + 1) = 0$ $G_{C}(s) = \frac{1+3\,Ts}{1+Te}$ $= \frac{3 T \left(\frac{1}{3 T} + s\right)}{T \left(\frac{1}{T} + s\right)}$ (2 + K)(2+K) a-(K-1) (2+K) a-(K+1) - e $\frac{(2+K)-(K+1)}{a}=0$ $(2 + K) - \frac{(K + 1)}{2} = 0$ $\sin \phi_{ex} = \frac{1-\alpha}{1+\alpha}$ $(2+K) = \frac{(K+1)}{2}$ sino... = 1-0-33 $\phi_m = \sin^{-1}\left(\frac{0.66}{1.33}\right)$ K (a = 1) = (1 - 2s) 6- - 30" - 46

59. (A) The given state equation		.: Number of bits/seq				
X(0) = AX(0)+8U(0		= 0.25 × 3000 × 2 + 0.25 × 3000 × 2 + 0.5				
	F 9 13	× 3000 × 1				
and	$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$	= 1500 + 1500 + 1500				
State transition matrix		= 4500 bits/sec				
e(n = L ⁻¹ (S) − A) ⁻¹		S. (D) Refer synopsis for more detail				
Hern	SI-A = [8 0]-[-01]	The diagonal clipping in the AM using envelop detector can be avoided if				
		1 W > RC where W = Message bandwidth				
or	$SI-A = \begin{bmatrix} S & -1 \\ 1 & S \end{bmatrix}$	RC = time constant of envelop detector.				
and	[SI = A] ⁻¹ = Adjoint of [SI - A] [SI = A]	64. (C) From given figure, it is clear that Q is quantizer with it, levels, strongles A allowable stone!				
	S 1 67 a 1 67 a 1	dynamic range [- V, V]				
	$\phi(t) = L^{-1}\begin{bmatrix} \frac{S}{S^2+1} & \frac{1}{S^2+1} \\ -\frac{1}{S^2+1} & \frac{S}{S^2+1} \end{bmatrix}$	(0) with range $\left[\frac{-V}{2}, \frac{V}{2}\right] \longrightarrow Q \xrightarrow{p_1(0)} \times \longrightarrow Q \longrightarrow p_2(0)$				
or	$\phi(t) = \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}$	Ţ				
	alternative (A) is the correct choice.	Constant 'C' is nothing but a quantizing error. And this				
60. (B) Giv	en f _s = 32 K samples/sec	quantizing error in DM is equally likely to lie anywhere in				
or	f _s = 32 × 1024 samples/sec	the interval $\left(\frac{-\Delta}{2}, \frac{\Delta}{2}\right)$ is $\frac{\Delta^2}{12}$.				
	x(t) = 125 r[u(t) - u(t-1)] + (250 - 125 f) [u(t-1) - u(t-2)]	66. (B) Given f _{er} = 10 kHz = 10 × 10 ⁵ Hz We know that, bendwidth of the given by relation				
or	x(t) = 125 r[u(t) - u(t-1)] + 250 [u(t-1)]	BW = 2 (8 + 1) / _m				
	- u (t-2)] - 125 t [u (t-1) - u (t-2)]	since for NRFM, 6441				
from th	e given expression of x (f), the slope is 125.					
To avo	id slopa-overload noise in delta-modulator					
	$\frac{\Delta}{T_A} \ge \frac{dx(f)}{df}$	66. (D) Given depth = 1 m r = nadius				
where,	Δ = step size	A				
	T _e = sampling period	. A				
	\frac{\text{dir (f)}}{\text{df}} = slope of the modulating signal	6=345				
Now,	$\Delta \approx T_{\alpha} \frac{d'}{dt} \times (0)$	o				
or	$\Delta_{\min} = \frac{1}{f_0} \times 125$	From figure				
or	$\Delta_{min} = \frac{-1 \times 125}{32 \times 1024}$	sin e = DB AD				
or	$\Delta_{min} = \frac{4}{216}$	or $\sin 45^\circ = \frac{I}{\sqrt{I^2 + g^2}}$				
or	Δ _{min} = 2 ⁻⁶	or $\frac{1}{\sqrt{2}} = \frac{I}{\sqrt{2^2 + I^2}}$				
61. (B)		72 4P+1*				
	ng Shannon-Fano coding	or c ² = 1				
	025 0.0 \ 2.00	or r = 1				
	025 0 1 2 565	Now, Area ≈ x×r²				
	0:50 1 }1bit	* = ==				

3330			$4\hat{o}_{x} + 3\hat{o}_{x} + 5\hat{o}_{x}$		where.	c = velocity of	light in free space.
67.	(C) Given	Region I	40 _y + 30 _y + 00 _z Region II			sp mode	
			Us Tiles			f, =	0
		C11 14	e ₁₂ =4 σ ₁ =0				28
		6,10			and to	or TE ₃₀ mode	
	E		• E ₁			fc =	20
		0	x=0 x>0		given	fo =	18 GHz
	Since,		0			18 × 10 ¹⁰ =	3×3×10 ⁸
	Therefore	Tr	E.		Or .		
					or	a =	4 × 10 ²
	and	Dx, =	D _{s2}		or		0.25 cm
	which gives	E, =	E _{vs}				otions are incorrect.
		Ē, =	-	70	(C)	Given I =	
					(w)		600 kHz
	and c,	E	z _{ε1} E _{x1}		Radie	tion resistance,	Red
	or	T -	$\varepsilon_{r_{3}} \cdot \overline{\mathbb{E}}_{x_{1}}$				en e2 /9/\2
						russi	80 $e^2 \left(\frac{\Omega^2}{\lambda}\right)^2$
	or	E ., -	8/2		where	2. = wavelengt	h
	or	E	3 42				$\frac{G}{f} = \frac{3 \times 10^8}{8 \times 10^6}$
						λ =	f 8 × 10 ⁵
	or	E, =	3 â ₄				0-5×10 ³ m
	Therefore.	E. =	30,+30,+50,		Now.		an marg / 50 \2
68.	(A) We know	that tran	smitted power is given as		recer.	Pred -	$80 \times (3 \cdot 14)^2 \left(\frac{50}{0.5 \times 10^3}\right)^2$
			$P_{i'}(1-\Gamma^{0})$		or	Rest =	7-887 Ω
	where, $\pi = r$	efection	osefficient		or	Red =	
	and	F =	$\frac{x_0 - y_0}{x_0 + y_0}$		-		
	ano		1/2 + 1/4	71	(C) G		= 60, V _{BC} = 0.7 V
			The The				, → ₩
			V=000 V00				, → «
						C,	
			1 HO + 1 HO				12V
			A e0 e15 A e0				\$180
			11-11				53 kg
			34			5.3 102	11 P 3
			V1-1/1				C. V.
			14		V,	(A)	40
			2-1			Y	
			1 + 1			<u>+</u>	+
			1		Errom	figure	
			-3			12-1	K-I _E = 53 K-I _B = V _{BE} = 0
	Now.		$P_{i}\left(1-\frac{1}{9}\right)$		or		+ (c) - 53 K (n - V _{me} = 0
	14400,						. Y Kla v
	or	Pr.	i.e. ratio of transmitted p	sower.	or 12	-1K Boo	$I_{G} = 53 \frac{\text{K} \cdot I_{G}}{\text{B}_{GC}} - \text{V}_{BB} = 0$
		.,	to the incident p	ower)	or	$J_0 = \frac{12}{\left(\frac{1}{80} + \frac{1}{1}\right)}$	-07 11·3 = 5.95 mA
69	We know th	at cut-off	frequency is given by relation			11.	-07 = 11·3 = 595 mA
			§√ <u>m²</u> + <u>m²</u>				
		14 1	2 V a2 *b2		Now,	Vcs =	Voc = lo Ro
G.							

